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Abstract A theoretical study is performed to investigate transport phenomena in channel flows
under uniform heating from either both side walls or a single side. The anisotropic t*> — e, heat-
transfer model is employed to determine thermal eddy diffusivity. The governing boundary-layer
equations are discretized by means of a control volume finite-difference technique and numerically
solved using a marching procedure. It is found that under strong heating from both walls,
laminarization occurs as in the circular tube flow case, during the laminarization process, both the
velocity and temperature gradients in the vicinity of the heated walls decrease along the flow,
resulting in a substantial attenuation in both the turbulent kinetic energy and the temperature
variance over the entire channel cross section; both decrease causes a deterioration in heat
transfer performance; and in contrast, laminarization is suppressed in the presence of one-side-
heating, because turbulent kinetic energy is produced in the vicinity of the other insulated wall.

Nomenclature o
¢, = specific heat at constant pressure, k= turbulent kinetic energy, m?/s?
J/(kgK) M = the number of mesh
C,,C1,C3,Cu1,Can Nu = Nusselt number, 2Hh/A
= turbulence model constants for P = time-averaged pressure, Pa
velocity field Pr = Prandtl number
Ci, Cp1,Cp2, Cp3 Pr¢ = turbulent Prandtl number
= turbulence model constants for q = heat flux, W/m?
temperature field q*w = dimensionless heat flux parameter,
Cs, Cyt, Ca1, Cao equation (14)
= turbulence model constants for Re = Reynolds number, 2u,,H/v
temperature field R, = turbulent Reynolds number, k*/(cv)
£, a0, £ Rr = dimensionless distance, y*
= turbulence model functions for St = Stanton number, qw/(pcpum
velocity field (Tw-Th))
£, fp1, B2, o3, T, fao T* = dimensionless time-averaged
= turbulence model functions for temperature, (T—T)/(qw/pcpu*)
temperature field T = time-averaged temperature, K
g = acceleration of gravity, m/s? t = fluctuating temperature component,
G = mass flux of gas flow, kg/(m?) K
Gr = Grashof number, ggwH/@?\T) in t*¥ = friction temperature, qw/(pc,u*), K
h = heat transfer coefficient, W/m?K t> = temperature variance, K

channel height, m



U, V= time-averaged velocity components 6 = turbulent energy dissipation rate,
in axial, and normal-wall directions m2/sS & = V%%
respectively, m/s g = dissipation rate of temperature
U, w : 2 a6 ot
= time-averaged and fluctuating variance, K/s ey = ago50
Velocity Components in the X; )\, At = moleml?r.and turbule-nt thermal
directions respectively, m/s conductivities respectively, W/(Km)
U, = mean Velocity over channel cross My ot = molecular and turbulent viscosities
section respectively, Pa sec
wv, w v = fluid kinematic viscosity, m?/s
= fluctuating velocity components in Ok, Ocs
axial, wall-normal and tangential = tl_lrbul_ence model constants for
directions respectively, m/s diffusion of k, e respectively
uw* = friction velocity, m/s 0t = dimensionless temperature,
u" = dimensionless velocity, U/u* 0" =1 =%
X; = coordinates, m
y = wall-normal coordinate, m Subscripts
y" = dimensionless distance, u"§ Jv b = bulk
¢ = center or insulated wall
Greek letters in = inlet
o = thermal diffusivity, m%s max = maximum
Qg, az w = wall
= turbulence model constants for
temperature field Superscripts
p = density, kg/m® — = time-averaged value
¢ = distance from wall, m
Introduction

When a gas in a tube is heated with extremely high heat flux, the flow may be
laminarized; that is, a transition from turbulent to laminar flows occurs at a
higher Reynolds number than the usual critical value, i.e. Re = 2,300. This
phenomenon is referred to as laminarization. Both the criteria for its occurrence
and its heat transfer characteristics have been reported by several investigators
(Bankston, 1970; Coon and Perkins, 1970; McEligot et al., 1970; Perkins et al.,
1973; Mori and Watanabe, 1979; Ogawa et al., 1982). Kawamura (1979) and
Torii et al. (1990) analyzed laminarization phenomena by means of k-kL and k-¢
models respectively. Ogawa and Kawamura (1986; 1987) measured the local
friction factor and local Stanton number in the laminarizing flow and predicted
their substantial attenuation during laminarization using the k-kL model
modified by Kawamura (1979). Furthermore, Torii ef al. (1993) and Torii and
Yang (1997) investigated the flow and thermal fields in a strongly heated
circular tube by means of a Reynolds stress turbulence model and a two-
equation heat transfer model respectively. They reported that:

(1) even with a substantial reduction in heat transfer, ie. when
laminarization takes place, the turbulent kinetic energy does not
disappear completely; and

(2) laminarization due to strong heating causes both a reduction in the
Reynolds stress and an amplification of the inherent anisotropy of the
turbulence structure;
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(3) both the temperature variance and the turbulent heat flux are also
diminished over the whole tube cross section in the flow direction; and

(4) although both the velocity dissipation time scale and the temperature
dissipation time scale are substantially amplified in the laminarizing
flow, their ratio is only slightly increased.

Recently, Ezato et al. (1999) predicted a strongly heated forced gas flows at low
Reynolds numbers in the vertical circular tubes using the &-¢ turbulence model
of Abe et al. (1994), in which the calculation was compared with the
experimental results measured by Shehata (1984).

It is very important to investigate how passage geometry affects the
laminarizing gas flow under strong heating. Torii et al. (1991) studied heat and
fluid flow transport phenomena in concentric annuli under high heat flux
heating. They disclosed that:

(1) when the gas flow is strongly heated with the same heat flux level from
mner and outer tube walls, the local heat transfer coefficients on both
walls approach the laminar values along the flow, that is, the
laminarization takes place;

(2) the existing criteria of laminarization for circular tube flows can be
applied to annular flows as well if the occurrence of laminarization is
estimated using a dimensionless heat flux parameter q*w; but

(3) annular flows heated strongly from only one side are less vulnerable to
laminarization even if the usual criteria are satisfied.

A similar numerical study has been reported by Fujii et al. (1991), who employ
three difference turbulence models, 1.e. k¢, k — ¢ — uv, and & — kL — uw. The
occurrence of laminarization is clearly affected by the passage geometry and
may be also affected by the boundary condition of the heat source. Thus, the
effects of passage geometry and boundary condition on the occurrence of
laminarization warrant further investigation.

The purpose of the present study is to investigate heat transport phenomena
in channel flows under two conditions:

(1) where both walls are simultaneously heated with uniform heat flux; and
(2) where only one-side wall is heated.

The anisotropic t? — &, heat transfer model of Torii and Yang (1996) and the
anisotropic k- turbulence model of Myong and Kasagi (1990) are employed to
determine the mechanism of heat transport phenomena. The turbulent thermal
conductivity ) is determined using the temperature variance, t>, and the
dissipation rate of temperature fluctuations, e, together with %2 and e.
Emphasis is placed on the effects of the boundary condition on the laminarizing
flow, based on the numerical results, ie. the turbulent Kkinetic energy,
temperature variance, velocity, and temperature profiles.



Governing equations and numerical scheme

Consideration is given to a steady turbulent flow in a strongly heated channel.
The physical configuration and the coordinate system are shown in Figure 1. In
this analysis, the dependence of gas properties on temperature, as well as
changes in gas density, must be taken into account (Schlighting, 1968). The
continuity, momentum and energy equations for an incompressible fluid,
disregarding buoyancy force, read:

Continuity equation:
85’3' —0 1)
Momentum equation:
pvg—gz-g—f%(ﬂgg-p) @)
Energy equation:
cPﬁUig—i = aii (Ag—; - %W) (3)

Here, the turbulent fluctuations of A, i and ¢, through temperature fluctuation
have been discounted. The term for body force in the momentum equation is
also negligible, because a small diameter tube was employed and throughout
the calculation, the buoyancy parameter Gr/Re;,> was less than 0.1 so that
forced convection may be expected to dominate.

In order to solve numerically the turbulent heat transport problems, the
turbulent heat flux in the energy equation, as a simple method, is modeled by
using the classical Boussinesq approximation. That is, the unknown
turbulent thermal conductivity \; is obtained from the definition of the
specific heat c,, the turbulent viscosity j and the turbulent Prandtl number
Pr, as Ay = cpue/Pry. However, the numerical calculation with this
formulation gives no more detailed information on heat transport phenomena,
such as temperature fluctuations and turbulent heat flux. To achieve this
objective, the one- and two-equation models for thermal field and the
turbulent heat flux equation model are employed. Recently, McEligot et al.
(1998) carried out an assessment of several turbulence models in internal gas
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Figure 1.

A schematic of the
physical system and
coordinates
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flows under strong heating. They reported that a turbulence model capable of
reproducing the correct near-wall limiting behavior of turbulent quantities is
recommended to calculate strongly heated turbulent or laminarizing gas
flows. In the present study, the t*> — ¢, model for thermal field is applied to
analyze gas flows in a strongly heated channel flows, because the model
introduced in the following satisfies the requirement of near-wall limiting
behavior. The turbulent heat flux — ¢, p u;t in equation (3) can be given in the
form of an anisotropic eddy-diffusivity representation (Torii and Yang, 1996),

as:
. K LE) oT

— cppuit = Cyfie, ok | — —
Cppu MACpp <5> e ) ox

oS (B L, 2V, 00 (99U OT
ACpP 3 Et ! 8Xj aXi 2 an aXi 8Xj7

where C\ is a model constant and f) is a model function. In the present study,
a two-equation model for heat transport capable of predicting the anisotropic
turbulent heat fluxes (Torii and Yang, 1996) is used to obtain t* and &, in
equation (4). The transport equations for t? and &, are expressed in tensor
form as:

_ o2 0 [ o2 |k ot? ___ 0T _
cppUj G_XJ = 8_XJ ()\a—XJ + Cs ~ Pty 8_xl> — 2Cppujt8_xj —2cpper (D)
and
_ a&‘t 8 (%t k 8€t
U—=—(A—+Cy— 0 —
PPV 8Xj 15) i ( an + ¢ IS U] 8Xi
g 0T e 07T & oU;
- CplprCthZQHita—Xj - CprpQCppEujta—Xj — Cpatpscpp Ty o (6)

2
_&t _EE
- Cdlfdlcpl)t:2 — CdedQCppT

respectively. Notice that the model satisfies the requirement of near-wall
limiting behavior in channel flows (Torii and Yang, 1996). The empirical
constants and model functions in equations (4), (5) and (6) are summarized in
Table L.

In general, the Reynolds stress turbulence model is employed to obtain the
Reynolds stress — pti; in equations (2), (5) and (6). In the present study, these
stresses are determined based on the anisotropic eddy diffusivity
representation (Myong and Kasagi, 1990), because much shorter computing
time is achieved than the utilization of the Reynolds stress model. Its
presentation is as follows:



2 oU; U

Thermal-fluid

_ _ k & 1
— Uity = — o ypk — < o o, ) + o Z; Cs (Sﬂij —3 Sﬁl)p‘SiJ) transport
' e A= phenomena
2 k ovk\?2
o - _61' - 6in6'n 4(Simé"m <—) 7
+3Nt5( j in + J) B%, ()
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where
0U; 0U;
Slij = a_ a4
Ox, 0%y
1 ,0U,0U; 09U, 0U;
Saij =5 ( - t oo )
) 2 aXi aX»Y 8Xj 8x7
S ou, 0u,
W0 0x;
Here, the turbulent viscosity p can be expressed in terms of the turbulent
kinetic energy k and its dissipation rate e, referring to the Kolmogorov-
Prandtl’s relation (Rodi, 1982), as
2
e = Cuful_’? . (8)
C, and f, are a model constant and a model function respectively. Both
transport equations developed by Myong and Kasagi (1990) read
___ 0k 0 e\ Ok B ou;
LN (TS L S A 9
P Jaxj aXJ{ M+O’k 8X]} puu.] aXJ pe ( )
0 0 e\ Oe € oU; _e?
f—— = — ) =— ¢ —Cafgp-—mw —— — Cofop— 10
PUj o 0x; {(N + 0'5) ax; } etle1py Uil 0x; 2le2p (10)
Cp1 1.20 Cpo 0.51 Cps 0.52 Cs 0.11
fpr 1.0 po 1.0 fps 1.0 Cyt 0.11
Cy 0.078 B, 34 Ay 35.6
Cat 2.0 Cao 0.8 a1 0.056 s 0.014
Ry (k/v)(k/e) " (72 /er)’
f 1— exp(—\/rf:(l)‘) Table L
a2 Empirical constants
faz {1 —exp(—)} and model functions in
_ _y'2 By the anisotropic t? —
fa {1 = exp( A*)} (1+ Rf.’/") heat transfer modetl
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Table II.

Empirical constants
and model functions in
the anisotropic k-¢
turbulence model

The empirical constants and model functions in equations (8), (9) and (10) are
presented in Table II. A combination of the k- model for velocity field and the
t> — &, model for thermal field is applied to analyze gas flows in a strongly
heated channel flows.

A set of governing equations are solved using the control volume finite-
difference procedure developed by Patankar (1980). The power-law scheme for
the convection-diffusion formulation is employed to link the convection-
diffusion terms. Since all turbulent quantities as well as the time-averaged
streamwise velocity vary rapidly in the near-wall region, the size of nonuniform
cross-stream grids increases with a geometric ratio from the wall towards the
center line. The maximum control volume size near the center line is always
kept at less than 1 per cent of channel height. To ensure the accuracy of
calculated results, at least two control volumes are located in the viscous
sublayer. Throughout the numerical calculations, the number of control
volumes is properly selected between 72 and 98 to obtain a grid-independent
solution, resulting in no appreciable difference between the numerical results
with different grid spacing, as shown. The discretized equations are solved
from the inlet in the downstream direction by means of a marching procedure,
since these equations are parabolic. The maximum step-size in the streamwise
direction is limited to five times the minimum size in the wall-normal direction
of the control volume. At each axial location, the thermal properties for control
volumes are determined from the axial pressure and temperature using a
numerical code of reference (Propath Group, 1987).

The hydrodynamically fully-developed isothermal flow is assumed at the
starting point of the heating section. The following boundary conditions are
used at the walls:

Case A (both-sides heating)

y=0:U=£k=0,
OVEk\2 ot 92(t2/2)
£ = 21}(8—};) ,8—y: O,Et = 0587372, and
oT W
oy i—w (constant heat flux)
y=H:U=k=0,
C,u Ok Oc¢ C£1 Cs? Cl C3 fgl
0.09 14 1.3 14 18 0.8 -0.15 1.0
B (14 58){1 - exp(— )}
feo [1 = 3exp{—(§)"}{1 — exp(— )}




2o B2 = o B

=y constant heat flux
Aw

Case B (one-side heating)

y=0:U=k=0,
Mk\2 ot 92(t2/2)
— 2 = U. = - ' 7
<8y) 6y 0.6 =a ay? , and
- g—i = ;l—: (constant heat flux)
y=H:U=k=0,
OVE\2 Ot 9% (t2/2) oT _
=20 ( Dy ) By =06 =0——5— oy and oy 0 (insulation)
Based on the above boundary conditions, the computations are processed in the
following order:
(1) The initial values of U, &, ¢, T, t2 and ¢, are specified and assigned a

constant axial pressure gradient. Here, the values of U, % and ¢ in the
hydrodynamically fully-developed isothermal channel flow are
employed as the initial values.

The equations of U, %, ¢, T, t2 and ¢, are solved using the boundary
conditions given here.

Step 2 is repeated until the criterion of convergence is satisfied. It is set
at

max | T| < 10_4 (11)

for all variables ¢ (U, k, ¢, T, t 2 and &). The superscripts M and M-1 in
equation (11) indicate two successive iterations, while the subscript
“max” refers to a maximum value over the entire field of iterations.

New values of U, %, ¢, T, t2 and & are calculated by correcting the axial
pressure gradient.

Steps 2-4 are repeated until the conservation of the streamwise flow rate
is satisfied under the criterion
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J Ugpdy — [ Unndy -5
<10 12
| JUilldy | - ( )

and the convergent values of U, %, ¢, T, t2 and &, are evaluated. Here, Uep
1s the axial velocity under the correction process and Uj, is that at the
inlet of the channel.

(6) Steps 2-5 are repeated until x reaches the desired length from the inlet.

In the present study, the nondimensional heat flux parameter q*w is employed
to indicate the magnitude of heat flux at the channel wall. This parameter,
originally proposed by Nemira et al. (1980) for determining thermal transport
phenomena in concentric annular gas flows, is defined as

q+ _ dinqin —+ dothout 1
v din + dout (GCPT) ’

in

(13)

where d;, and d,; are, respectively, the inner and outer tube diameters of the
annulus, and q;, and g, correspond to heat fluxes on the inner and outer walls
of the annulus. The above parameter was also used for determining
laminarization phenomena in concentric annuli heated with high heat flux
(Torii et al., 1991). When applying equation (13) to two-dimensional channel, it
1s reduced for Cases A and B, as

+ Qw
qW B (GCPT)in (14a)
and
I qw
+_ - AW
W = 3G,y (140)

respectively. Note that for the Case A, the parameter defined in equation (14a) is
the same as that employed for the laminarizing gas flow in the strongly heated
circular tube. The ranges of the parameters are the nondimensional heat flux
parameter g w<0.009; the inlet Reynolds number, i.e. the Reynolds number
at the onset of heating Re;, = 8,500; and the inlet gas (nitrogen) temperature
T;, = 273K. Numerical computations were performed on a personal computer
(32 bit).

To verify the k-¢ turbulence and two-equation heat-transfer models and to
determine the reliability of the computer code, heat transfer coefficients and
velocity, and temperature profiles are calculated. The model is applied to
channel flow with a low uniform wall heat flux. The variation of the gas
properties only slightly affects the velocity and thermal fields. The numerical
result is obtained at a location of 150 times the hydraulic diameter downstream
from the inlet where both thermally and hydrodynamically fully-developed
conditions prevail.



Figure 2 illustrates the heat transfer coefficients at different mesh sizes in
the form of Nusselt number Nu versus Reynolds number Re. Figures 2(a) and
(b) correspond, respectively, to the numerical results for channel flows where
both walls are heated simultaneously with uniform heat flux, and where one
wall is heated and the other wall insulated. For comparison, theoretical
solutions (Kays and Crawford, 1980) of laminar and turbulent heat transfer are
superimposed in the figure in solid straight lines. One observes that the
calculated Nusselt numbers, which are depicted with the solid symbols, are in
excellent agreement with the correlation in the higher Reynolds number region,

2
10 - Turbulent =
[ Theoretical Solution ]
- by Kays and Crawford 1
Prediction |
O @ M=98 T
| A A M=86 |
= O W M=72
10 Laminar ]
E o Nub:8.23 ]
l 1 | I | Ll L J
3 4
10 Re 10
(a) two-sides heating
102 - -
[~ Turbulent 7]
- Theoretical Solution .
— by Kays and Crawford ~ —
Prediction )|
5 O ® M=98 ]
z A A M=86
Oom M=72
= =
|- | § -
B Laminar ]
[ &—B8—=Nu,=5.39 _|
1 1 l l 1 Ll l
103 10*

Re

(b) one-side heating
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Predicted Nusselt
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developed channel flow
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over 3,000. However, the original models employed here fail to reproduce the
heat transfer behavior in the lower-Reynolds number region, ie. in the
transition region (Schlighting, 1968). That is, the transition from turbulent to
laminar flow is predicted to occur at much lower than the transition Reynolds
number and the transition itself is somewhat asymptotic rather than stepwise.
It is apparent that the prediction efficiency in the turbulent-to-laminar
transition region is of crucial importance in the examination of the
laminarization phenomena.

An attempt is made to modification to take the slight shortcoming of
turbulence models employed here into account. In the analysis on
laminarization phenomena by means of the k-¢ turbulence model, Torii et al.
(1990) reported that the transition Reynolds number, from laminar to turbulent
flows, is obtained by modifying the model constant, C.;, and model function f.;
in the ¢ equation. Based these consideration, C.; and f.; are determined by a
trial-and-error process so as to simulate the heat transfer behavior in the
transition region. In the present study, the value 1.39 for C.; and the following
function of the turbulent Reynolds number for {1, are used.

Using a combination of the slightly modified k-¢ turbulence model and the
original two-equation heat transfer model, the predicted Nusselt numbers are
superimposed in Figure 2(a) and (b) with open symbols. It is observed that:

(1) calculated values of the Nusselt number are in excellent agreement with
correlations in the Reynolds number region over 3,000; and

(2) the turbulence model reproduces the heat transfer characteristics in the
lower Reynolds number region; that is, the transition from turbulent to
laminar flows is predicted to occur at about Re = 3,000.

In the following, the modified model was employed to predict the thermal
transport phenomena in the strongly heated channel flows. It is observed,
through the calculation, that there is only a slight change in the Nusselt number
even if the number of control volumes is set between 72 and 98. Therefore, no
appreciable difference appears between the numerical results with different
grid spacing.

Figure 3 illustrates the calculated time-averaged velocity profiles
(dimensionless velocity u” versus y*) at Re = 1,000 and 10,000. The results are
compared with the universal wall law. Here, numerical results are obtained for
channel flows heated from both sides. The result at Re = 10,000 predicts a
velocity profile with the well-known characteristics of the logarithmic region.
The velocity profile at Re = 1,000 is in good agreement with the laminar one, 1.e.
u'=y". The corresponding distributions of the time-averaged temperature in
the thermal field are illustrated in Figure 4 in the form of T" versus y". The
numerical result at Re = 10,000 is in accordance with the law of the wall for a



thermal boundary layer, and the laminar profile T* = Pry™ is predicted at Re =
1,000. The above numerical results show that the validity of the computer code
and the accuracy of the turbulence models employed here are borne out.

Results and discussion
Two sets of calculations to determine heat transport phenomena in channel
flows with:

(1) both walls heated simultaneously with uniform heat flux; or
(2) one wall heated and the other wall insulated, are explained below.

Figure 5 illustrates the local heat-transfer coefficients in strongly heated
channel flows in the form of Stanton number Sty, versus Reynolds number Rey,,
with q"w as the parameter. Figures 5(a) and (b) correspond to the results for
two-sides and one-side heating (Cases A and B) respectively. The inlet bulk
Reynolds number is fixed at 8500. Theoretical solutions for turbulent and
laminar heat transfer in the thermally and hydrodynamically fully-developed
channel flows (Kays and Crawford, 1980) are superimposed in the figure in a
solid straight lines. In Figure 5, a reduction in the bulk Reynolds number
signifies a change in the location along the channel, because the bulk Reynolds
number decreases from the inlet with the axial distance resulting from an
increase in the molecular viscosity by heating. The numerical results for Cases
A and B show that the local Stanton numbers at q*w = 0.0025 first decrease in
the thermal entrance region, then increase, approaching the turbulent
correlation further downstream. This suggests that no laminarization will
occur. On the contrary, as the flow goes downstream, the predicted Stanton
numbers at q*w = 0.0043, whose level causes the laminarization in the strongly

— ———
20 b u*=5.5+2.5Iny* )
u*=-3.05+5.00Iny*
. !
5
10 | Prediction -
4 —@— Re=1000 ]
u=y —o6— Re=10000
O i P S | " hednbaddeadade i e
1 10 . 102 103
y
20
T*=Pry*
T*=2.17Iny*+4.3
L 10
—@— Re=1000
Re=10000
0 . = S A
1 10 . 102 108

y
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Figure 3.

Radial distributions of
time-averaged velocity
in the fully-developed
channel flow for

Re = 1,000 and 10,000

Figure 4.

Radial distributions of
time-averaged
temperature in the

fully-developed channel

flow for
Re = 1,000 and 10,000
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Figure 5.

Predicted local Stanton
number with Reynolds
number as a function of
nondimensional heat
flux parameters under
different boundary
conditions
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(a) two-sides heating
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q*,=0.0090

St,

- Laminar
Theoretical Solution
by Kays and Crawford

Sty=5.39Re;, "Pr, " Flow

1 073 1 1 i
Reb

(b) one-side heating

heated circular tube, depart from the turbulent heat-transfer correlation and
approach the laminar correlation, as shown in Figure 5(a). Bankston (1970)
pointed out that the substantial reduction in St;, along the flow is due to the
occurrence of laminarization. In other words, if the channel is strongly heated
from both walls, the fluid flow is laminarized as in the circular tube flow case.
However, in Figure 5(b) the local Stanton number at q*w = 0.0043 decreases in
the thermal entrance region, then recovers along the flow and eventually
approaches the turbulent correlation equation further downstream. This
transport phenomenon provides a striking contrast to that for Case A at the



corresponding dimensionless heat flux. When heat flux on a single heating wall
becomes higher, the predicted local Stanton number, as seen in Figure 5(b),
approaches the turbulent correlation downstream, even at q"w = 0.0090, i.e. a
level that under two-sided heating completely laminarizes the tube flow. In
other words, if a channel is heated exclusively from only one wall, the fluid flow
can not be laminarized and is a striking contrast to the tube flow case. This
behavior in the channel flow is the same as the thermal-fluid transport
characteristics in the annuli heated strongly from only one side, as mentioned
in the introduction. The occurrence of laminarization is thus clearly affected by
boundary conditions.

An attempt is made to explore the heat and fluid flow mechanisms for two-
sides and one-side heating (Cases A and B), based on the numerical results at
q"w = 0.0043, i.e. turbulent kinetic energy, temperature variance, turbulent
heat flux, velocity and temperature profiles. Figure 6 illustrates the wall-normal
distributions of the time-averaged flow velocity U/U,,.x at three different axial
locations: x/H=0, 60, and 120. Figures 6(a) and (b) show the numerical results
for Cases A and B respectively. The velocity U is normalized by the maximum
value U, at each axial location. The laminar flow profile is superimposed in
the figure as a solid line, for comparison. In Figure 6(a) a substantial reduction
of the velocity gradient takes place in the flow direction and the velocity profile
approaches laminar one in the downstream region. In contrast, Figure 6(b)
shows that the velocity gradients at the walls are slightly diminished along the
flow, particularly in the vicinity of the heating wall, and the velocity profile is
substantially different from the laminar one in the flow direction. The
corresponding streamwise variations of the turbulent kinetic energy k for
Cases A and B are illustrated in Figures 7(a) and (b) respectively. Here, the
numerical results are normalized by a square of the wall friction velocity at the
onset of heating u*2. It is observed in Figure 7(a) that the turbulent kinetic
energy level for two-sided heating (Case A) is extremely attenuated over the
whole channel cross section in the flow direction due to high flux heating. This
streamwise behavior is in accordance with that of the velocity distribution in
Figure 6(a). The substantial attenuation in both velocity and turbulent kinetic
energy is the same as the flow characteristics in the laminarizing flow in both
the heated tube (Torii et al., 1990; Torii and Yang; 1997) and the annuli heated
from both inner and outer tube walls (Torii et al., 1991). However, numerical
results for Case B show that as the flow progresses, appreciable turbulent
kinetic energy still remains in the velocity field, particularly near the insulated
wall, as seen in Figure 7(b). This behavior corresponds to that of the velocity
distribution in Figure 6(b) and is similar to that in the annular flow. That is,
when the annular flow is strongly heated from one wall, the turbulent kinetic
energy is severely diminished in the vicinity of the heating wall, while it is
intensified near the opposite wall along the flow, as mentioned in the
introduction. All these results consistently show that:

(1) if the flow is strongly heated from both side walls of the channel,
laminarization occurs; and
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Figure 6.

Variation of time-
averaged streamwise
velocity profiles in a
strongly heated flow
with three different axial
locations

(2) the trend towards laminarization from the strongly heated wall is
always suppressed by the turbulent kinetic energy produced in the
region near the insulated wall, where heat flux is added to the flow from
one wall only.

Figures 8(a) and (b) show streamwise variations in the time-averaged
temperature profile 8% for Cases A and B respectively. Numerical results are
obtained at four different axial locations: x/H=0, 20, 60, and 120. Here, the
radial profile at x/H=0 is uniform. Note that in Figure 8(a) only one-half of the
channel cross section is represented because of the symmetry in the thermal
field. The substantial reduction in the temperature gradient for Case A occurs
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at the wall along the flow (Figure 8(a)), while numerical results of Case B reveal
only a slight reduction in the temperature gradient at the heated wall in the
flow direction (Figure 8(b)).

Figures 9(a) and (b) illustrate the radial distributions of the temperature
variance t* for Cases A and B respectively, in the thermal field. Numerical
results are shown in each figure for different axial locations: x/H=0, 20, 60, and
120. Here, the temperature variance is divided by the square of the friction
temperature t~ at each axial location. Notice that in Figure 9(a) only one-half of
the channel cross section is represented as mentioned previously. As the flow
moves in the downstream direction, there is a substantial reduction in t? for
Case A over the whole cross-section of the channel, as seen in Figure 9(a). This
behavior implies an attenuation in the temperature fluctuations in the thermal
field. For Case B, the predicted t* at x/H=20 undergoes a sharp rise near the
wall region followed by a gradual decline toward the other wall and as the flow
moves along the channel, the temperature variance level t? is somewhat
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Figure 7.

Variation of turbulent
Kkinetic energy profiles in
a strongly heated flow
with three different axial
locations
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Figure 8.

Variation of time-
averaged temperature
profiles in a strongly
heated flow with three
different axial locations
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diminished in the vicinity of the heated channel wall because of a decrease in
the temperature gradient near that wall. In other words, appreciable
temperature fluctuations remain in the thermal field when the flow is heated
from one wall only.

Figures 10(a) and (b) illustrate the wall-normal turbulent heat flux profiles at
different axial locations for Cases A and B respectively. For Case A, the wall-
normal turbulent heat flux level in the vicinity of the wall is substantially
reduced in the flow direction. This behavior is in accordance with the variation of
the time-averaged temperature distribution, as seen in Figure 8(a). In contrast,
the wall-normal turbulent heat flux level maintains to a certain degree along the
flow. The corresponding distribution of the streamwise turbulent heat flux, ut,
was not depicted here, because ut exerts no direct effect on heat transfer.
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In summary, substantial reduction in the turbulent kinetic energy and
temperature variance results in an attenuation in the Stanton number, as
shown in Figure 5(a). One may thus conclude that a flow in a channel heated
with uniform wall heat flux from both walls is laminarized, as are the tube and
concentric annular flows. In contrast, a streamwise deterioration of the Stanton
number in Figure 5(b) is suppressed by the presence of the turbulent kinetic
energy produced in the vicinity of the insulated wall, even if the heat flux
parameter satisfies the laminarization criterion for circular tube flows. That is,
the trend towards laminarizing the flow is always suppressed if the heat flux is
added to the flow from only one wall, even at levels that cause laminarization in
a circular tube flow.

Next is to determine the criterion for the laminarization of flow in a two-
dimensional channel heated under uniform wall heat flux from both side-walls.
First of all, conditions should be specified under which the flow is certainly
laminarized. Torii ef al. (1990) established the criterion for the laminarizing
flow in a tube with high heat flux using the k-¢ turbulence model. That is,
laminarization occurs when the calculated turbulent kinetic energy at the
location 150 diameters downstream from the inlet becomes lower than one-
tenth of the inlet value. The same idea, in which the criterion is for the turbulent
kinetic energy at x/H=150 to be lower than one-tenth of its inlet value, is
adopted in the present study. This is because the streamwise variation of a
turbulent kinetic energy in the laminarizing flow, as depicted in Figure 7(a), is

Thermal-fluid
transport
phenomena

819

Figure 9.

Variation of temperature
variance profiles in a
strongly heated flow
with three different axial
locations
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Figure 10.

Variation of wall-normal
turbulent heat flux
profiles in a strongly
heated flow with three
different axial locations
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similar to that in the strongly heated tube case (Torii ef al., 1990). The predicted
criterion is depicted in Figure 11, in which the existing criteria for the circular
tube and the predicted criteria for the circular and annular tube flows (Torii et
al., 1990, 1991) are superimposed for comparison. It is observed that the
criterion obtained here is similar to the circular and annular tube cases over a
wide range of Reynolds numbers. One may thus conclude that a flow in a two-
dimensional channel with uniform wall heat flux is laminarized at a same
heating level as the circular and annular tube flow cases.

Summary )

Anisotropic k-e-t?-e; model has been employed to numerically investigate fluid
flow and heat transfer in a channel heated with uniform heat flux.
Consideration is given to the effects of passage geometry and boundary
conditions on the occurrence of laminarization. The results are summarized as
follows:

(1) If the channel is simultaneously heated from both walls with high
uniform heat flux, a substantial reduction of the local Stanton number
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causes laminarization along the flow. Therefore, the fluid flow in the
channel is laminarized, just as in the circular and annular tube flow
cases.

When laminarization takes place, the velocity and temperature
gradients in the vicinity of the channel wall decrease along the flow,
resulting in a substantial attenuation in both the turbulent kinetic
energy and the temperature variance over the entire channel cross
section. Consequently, the turbulent heat flux is diminished by a
decrease in the turbulent kinetic energy and temperature variance over
the channel cross section, resulting in the deterioration of heat-transfer
performance.

If the channel is heated from only one side wall, substantial reduction of
the local Stanton number is suppressed, resulting in no laminarization.
This behavior is the same as that in an annulus heated with only one
wall. This is because the trend towards laminarization is always
suppressed by the turbulent kinetic energy produced in the region near
the insulated wall.

Criterion of laminarization in two-dimensional channel is similar to the
circular and annular tube cases if the channel is strongly heated under
the same heat flux level from both side-walls.

If the laminarizing flow takes place, the occurrence of laminarization is
affected by the boundary conditions of heating, while its effect of
passage geometry is minor.
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Figure 11.

A comparison of criteria
for the occurrence of
flow laminarization
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